the site subtitle

Theme Preview

2019.03.31

Headings

# H1
## H2
### H3
#### H4
##### H5
###### H6

H1

H2

H3

H4

H5
H6

Paragraphs

This is a paragraph.
I am still part of the paragraph.

New paragraph.

This is a paragraph. I am still part of the paragraph.

New paragraph.

Image

Web Image

Local Image

Block Quotes

> This is a block quote

This is a block quote

Code Blocks

```javascript
// Fenced **with** highlighting
function doIt() {
    for (var i = 1; i <= slen ; i^^) {
        setTimeout("document.z.textdisplay.value = newMake()", i*300);
        setTimeout("window.status = newMake()", i*300);
    }
}
```
function doIt() {
    for (var i = 1; i <= slen ; i^^) {
        setTimeout("document.z.textdisplay.value = newMake()", i*300);
        setTimeout("window.status = newMake()", i*300);
    }
}

Tables

| Colors        | Fruits          | Vegetable         |
| ------------- |:---------------:| -----------------:|
| Red           | *Apple*         | [Pepper](#Tables) |
| ~~Orange~~    | Oranges         | **Carrot**        |
| Green         | ~~***Pears***~~ | Spinach           |
ColorsFruitsVegetable
RedApplePepper
OrangeOrangesCarrot
GreenPearsSpinach

List Types

Ordered List

1. First item
2. Second item
3. Third item
  1. First item
  2. Second item
  3. Third item

Unordered List

- First item
- Second item
- Third item
  • First item
  • Second item
  • Third item

Math

$$
evidence\_{i}=\sum\_{j}W\_{ij}x\_{j}+b\_{i}
$$

$$
AveP = \int_0^1 p(r) dr
$$

When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

$$ evidence_{i}=\sum_{j}W_{ij}x_{j}+b_{i} $$

$$ AveP = \int_0^1 p(r) dr $$

When $a \ne 0$, there are two solutions to (ax^2 + bx + c = 0) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Emoji

This is a test for emoji. 😄 🙈 😸 🍉